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I. Problem Definition.

Consider-the problem of control of a beam as shown In Fig. 1. The beam is moving in the

x-y plane. It extends from x=O to x=L. The left end at x=O is clamped to an actuator which

moves the beam along the y-axis. The control input is the force u(t) in y direction. While

moving, the beam may vibrate. Let z(t) denote the displacement of the left from y=O and

w(t,x) the displacement of the beam from the line y=z(t) at position x and time t. Suppose a

position sensor is place on the beam and the sensing output is v(t, xo)=z(t) + w(t.xo), where

O<xo<L is the sensor location. We are interested in the case when the flexure w(t,x) of the beam

is significant. The problem is to synthesize a feedback control law which moves the beam from

one position to another in a stable manner.

It is well known [1] that when the sensor and the actuator are colocated a simple lead

compensator suffices to produce a stable design. This result holds even when the beam dynamics

are consided as a system with infinite zero-damping modes, and can be shown using root locus

arguement [2]..This stabilization method may break down, however, when there is a positional

gap between the sensor and actuator. In this case the classical compensation techniques are no

longer effective. Time-domain optimization approaches based on state-space models have been

applied to this problem, see for example [3]. In this article ,-we present ,a case study of

noncolocated beam control problem using frequency-domain optimization method proposed by

Professor Kwakernaak [4, 5J.' We emphasize the choice of the weighting functions in the cost

function, and the search method which always leads to stable designs.

II. Dynamic Models.

Assume the beam has a constant mass desity p, and a constant bending rigidity El. The

dynamics of the beam, under the assumption of negligible shearing, satisfy the equations

p L (d2 z/dt 2 ) + p ( 2 w/ t2) dx - u(t)

p (d 2 z/dt 2 ) + p (j2w/:t 2 ) + El (d4w/dx4) = 0 (1)

y(t) - v(t, xo)
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with boundary conditions

w(t, O)=Wx(t, 0) wxx(t, L)= Wxxx(t, L) =0 (2)

Let 0i be the eigenmode shapes of the beam. We discretize the dynamics by the decomposition

w(t, x) = 5 qi(t) Oi(x) (3)
iL=I

Let = (z, q1, q2, ... )T. We obtain an equivalent model of infinite dimension as

M + K =F u

y= C (4)

where
rL

pL P i dx 0 0

M= K=

p )i dx p i Oj dx 0 61 .

o 0

F=(1 0O0 ... )T, and C (11 1(xo) 02(xo) .. )

Suppose the sensor is colocated with the actuator at xo, then the output matrix becomes

C=(100 ).

This input-output relation gives rise to a well-known pattern (see [1, 61) of poles and zeros as

shown in Fig. 2. A simple proof is given on the basis of root locus arguement in [2].

Notice that in this modeling the beam is assumed to have no structural damping, which

results in all the poles and zeros lying on the imginary axis. In reality this is of course not the

case. Typically flexibility modes of very high frequency tend to have good damping. For
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stabilizing the system described above, it is therefore possible to first truncate the high-

frequency modes and concentrate on a finite number of modes with zero damping.

Consider a finite-dimensional model after truncation. Suppose the position sensor moves

away from the location of the actuator. It can be shown that the zeros will move upward along the

imaginary axis. Beginning from the highest mode the zeros will cross the poles while the poles

remain at the same locations. At some point the zeros will break into complex patterns and the

system has nonminimum phase zeros. This observation is very important, since nonminimum

phase zeros impose severe constraints to control synthesis. In Fig. 3. the zero movement due to

various sensor placements is shown with a three meter auminum beam.

Ill. Lead Compensation.

It has been observed (see [1]) that a lead compensator suffices to stabilize every mode of

the system in (4) when the sensor and the actuator are colocated. That is, the following theorem

holds.

THEOREM . Consider an open-loop system

G(s)= Ki rI(s-zi)/[s2 n(s-p)1 (6)

where Ki > 0, and 0 < zi < pi < zi+t for all i. Let H(s) be a lead compensator

H(s) = K2 (s/z + 1)/(s/p + 1). z<p. (7)

Then there exists a positive real number K° such that for any K in the interval (0, K) the

closed-lop system

M(s) = G /(1 +GH) (8)

is asymptotically stable.
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A sketch of the proof of this theorem is illustrated in Fig. 4. The departure angle 9i of

the root locus from the i-th mode satisfies the equation

Oi = Op -Oz + 2  (9)

where Op and Oz are the phases of the pole and the zero of the lead compensator. It is clear that

for a small gain the system is stable. Now suppose for a certain mode the order of the pole and

the zero is reversed as shown in Fig. 5, which corresponds to a noncolocated system. With a lead

compensator the departure angle from this pole can be computed as

(10)

It is clear that the system is unstable for small gains.

IV. Kwakernaak's Minimax Approach.

As shown in Section III, the classical compensation techniques are not effective in control

synthesis for noncolocated flexible beam with zero-damping modes. Our goal in this section is to

apply the minimax approach proposed by Professor Kwakernaak [41 to this problem. We

present only the procedural aspects of the design. For details of the supporting theorems the

reader is referred to the paper [4].

Consider again the truncated system (6) of the flexible beam. Let V and 0 be

respectively the zero polynomial and the pole polynomial. Consider a unity feedback

configuration and let H(s) = c(s)/c(s) be a controller where C and a are polynomials. The

sensitivity function S and its complement T are computed as

S(s) - (I + G H)-I a / X; T(s) - 1 - S y /X (1

where X = + W is the closed-loop characteristic polymonial. The objective of Kwakernaak's

minimax approach is to find a controller H(s) which minimizes the cost function

If.I
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Sup (I V(js)) S(jw)12 + IW(j() T(j4)12) 

There V(s) and W(s) are weighting functions. We denote

Z(s) =V(s) V(S) S(s) S*(s) + W(s) W'(s) T(s) T(s) (13)

where V(s) =V(-s). The objective is then to minimize Supo Z(j). It is shown in [4 that ify
an optimizing solution exists. it is unique and it satisfies

Z(S) = k.2(1 )"

For the beam control problem we let the weighting functions be

V(s) a 1 (~ 1 + S2 I s2 (2 0)

W(s) = "-a2/ P2= (T2 S n + 2 ) 1 (15) ,

where T1, T2 are positive constants to be chosen as design parameters. These weigntings satisfy '

the conditions:

(1) deg(al ) < deg(o), deg(a2) = deg(y) + pole excess.

(2) al, a2, and 531 have their roots in the closed LHP. The polynomials (X and 3i have no

common roots.

(3) The polynomial y= ..13a*202 + a2a2P1 3P has no rootson the jw-axis.

Under these conditions it can be shown that the minimax problem has a solution, With these

weightings and H(s) = Q a, the condition (14) can be expressed as

al ai1 o* a2 a29 -X2 X X* (16)
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Let

I = al Ci c2 a2*

Consider the polynomial y - TvX.2 with X as a parameter. Let Xo be the first value for which the

polynomial loses degree or assumes a root on the imaginary axis. It can be computed that

Xo ( t1 2 T24 )/ (T 12 + t1 4 t2 4 ). (17)

Now let H(s) be a reduced-order compensator for which

(, s) - Ci s n-i a (S) =i s"+--
( S, z ois n ' (18)

With a particular X the equation (16) gives a solution ( x, ax 1. However, a solution as such

may be unstable. It is shown in [4] that there exists a X > Xo, which yields an optimal

stablilizing compensator. To facilitate searching for stable solution we take the following

approach. Notice that the equation defining the closed-loop characteristic polynomial

a 0+= +S 2 n-1 1 di s2n-i-1 (19)

can be put into the form

S(O, W) C D (20)

where

1 I) ... 0 b, 0 ... 0
a, 1 ... 0 b2  b, .. 0

S . ) an_ a,-2 ... a, bn b n . . b,
an, art, , ... (12 0 bn ... b.,
1) an ... a 3  0 0 ... b

""N

-0 ... an, 0 0 ... b,-
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with )v=Zbisn'i, =s S _aisn-i, C = (ai I .n-1 "I . n)T andL=I

D = (di -at • dn-an dn+I -• d2n-1)T. The matrix S(o. y,) is nonsigular when o. and 1v are

coprime, and we have

C = S-'(I, )D (21)

The closed-loop characteristic polynomial can further be parametrized by a set of stable poles

as

; =(s + r).r [(s + gi) 2 + hi2 ], r,gi > O. (22)

Therefore the vector D in (21) can be replaced by parameters r, gi, and hi. Using this

parametrization the search for the solution of the equation (16) is always performea among

stabilizing compensators.

V. Numerical Results and Conclusion.

Consider a beam control system with the rigid-body mode plus a vibrational mode. Its

transfer function G(s) has poles and zeros as shown in Fig. 6. Notice the reverse order of the

pole and zero. Results of synthesis with respect to two sets of (t1. T ) are shown in Table 1.

With the stabilizing compensator parametrization the solution of (16) converges very well. We

have compared the controllers obtained minimax approach with state-space optimal controllers.

It is our experience that generally controllers obtained from the minimax approach have better

robustness.
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colocated system with compensated system with
lead compensation, poles and zeros reversed.

a.

a.

rd/s

9.31

8.33

T-?

Figure 6. Design example.

.



t=0.5 Z:2 =0.07 ti=1.5 t2 =0.14

X=0. 1914 closed loop =0034 closed loop
d 1=21.417 poles 61 =24.083 poles
6'2=41 6.554 6S2=552.07
6 3=-927.023 -2 63-379.09 -0.67

~1=-258.72 -2 1 =-353.28 -0.67
2=964.952 -5.41 2=528.18 -7.54

;3=354.773 -4.3+j3.3 ~3=201 .9 -5.57+j3.24
4=223.527 -1 .65+j 5.2 ~4=57.44 -2.04+j5.62

Table 1. Data on t1l,Z2, H(s) and closed loop poles.
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